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Abstract

Qualitative comparative analysis (QCA) is an influential methodological
approach motivated by set theory and boolean logic. QCA proponents have
developed algorithms to analyze quantitative data, in a bid to uncover nec-
essary and sufficient conditions where causal relationships are complex,
conditional, or asymmetric. This article uses computer simulations to show
that researchers in the QCA tradition face a vexing double bind. On the one
hand, QCA algorithms often require large data sets in order to recover an
accurate causal model, even if that model is relatively simple. On the other
hand, as data sets increase in size, it becomes harder to guarantee data
integrity, and QCA algorithms can be highly sensitive to measurement error,
data entry mistakes, or misclassification.
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Qualitative comparative analysis (QCA) is an influential methodological

approach motivated by set theory and boolean logic. It was originally devel-

oped in the 1980s to integrate and formalize tools for the comparative
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analysis of macro-historical social processes (Ragin 1987 2009). Since then,

QCA has been deployed in thousands of published articles, in a wide variety

of domains including political science, sociology, management, public

health, environmental science, education, and criminology (Roig-Tierno,

Gonzalez-Cruz, and Llopis-Martinez 2017).

QCA is perhaps best understood as a holistic “approach,” which aims to

identify interwoven “conditions of occurrence” (Berg-Schlosser et al., 2009).

It stresses the need to integrate qualitative analysis and more formal quanti-

tative methods. To that end, QCA offers a set of tools and algorithms for the

analysis of quantitative data (Berg-Schlosser et al., 2009). Proponents argue

that those algorithms can uncover necessary and sufficient conditions in

complex, conditional, and asymmetric causal relationships. They also sug-

gest that QCA algorithms perform well in the analysis of small-to-

intermediate data sets (e.g., 10 to 50 observations), where multiple regression

may be less useful (Berg-Schlosser et al., 2009).

Several researchers have used computer simulations to probe the robust-

ness and accuracy of the algorithmic tools developed in the QCA tradition

(e.g., Baumgartner and Ambühl 2019; Hug 2013; Krogslund, Choi, and

Poertner 2014; Lucas and Szatrowski 2014). These authors take the value

of qualitative analysis as given and assess how well the QCA tool kit per-

forms in quantitative data analysis. They manipulate features of the data or

estimation procedure in experimental fashion to identify the conditions under

which QCA routines yield correct answers.

This article builds on prior simulation-based work to highlight a vexing

double bind. In most real-life applications of crisp set QCA, some combina-

tions of explanators are more likely to occur than others. In such cases, the

performance of available algorithms can suffer,1 and the sample sizes that are

needed to produce satisfactory results become much larger. When a sample

increases in size, it becomes harder for researchers to guarantee data integ-

rity. As this article shows, measurement error, data entry mistakes, classifi-

cation problems, or typological ambiguity can have deleterious effects on

QCA solution quality.2 Thus, researchers in the QCA tradition often face a

choice between studying small data sets with limited configurational diver-

sity or large data sets with measurement error. In both contexts, QCA algo-

rithms can fail to recover complete or truthful causal models.

In support of this argument, I present the results of extensive Monte Carlo

experiments. These experiments yield three main conclusions. First, the

sample size required for credible inference using QCA is much larger than

is usually acknowledged in the literature. In the typical case where some

combinations of explanators are more likely to occur than others, analysts
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have no guarantee that crisp set QCA will recover a simple four-variable

model, even if the number of observations exceeds 300.

Second, a very small amount of measurement error can severely degrade

the quality of QCA solutions. For instance, in data sets with 49 “good”

observations and a single “bad” one, about 30 percent of the causal claims

produced by a QCA algorithm are strictly incorrect.3 Three mismeasured

observations make the proportion of false causal claims jump to about 60

percent.4 Even if the sample exceeds 300 observations, one would need

exceptional data quality or configurational diversity to ensure that the routine

produces less than 5 percent of incorrect claims.5

Third, the tuning parameters that users select for their QCA algorithms

can have a major effect on inference. For example, analyzing a data set with

300 observations, a single error, and the default consistency threshold of a

popular QCA routine produces nearly 40 percent of false causal claims.

Introducing three mistakes in a data set of 300 observations makes the share

of false causal claims cross the 70 percent bar.

Beyond these substantive insights, this article also makes three methodo-

logical contributions to the simulation-based literature on QCA. First, I

propose a flexible mechanism to manipulate configurational diversity in

Monte Carlo simulations. This mechanism draws an explicit link between

diversity and a quantity of great practical interest to empiricists: sample size.

The results described below thus offer strong intuition about the sample sizes

which ensure configurational diversity and about the number of observations

that QCA users should make in order to draw credible inference about com-

plex conditional processes.

Second, to test the effect of sample size and measurement error on QCA

solutions, I introduce two new formal criteria: wrongness and complete-

ness. Those two criteria measure the extent to which QCA solutions are

compatible with the data generating process. In addition, I evaluate the

performance of QCA algorithms by adapting a measure of classification

accuracy which is standard in the statistics and machine learning litera-

tures: root mean squared error (RMSE). Taken together, those three criteria

offer a more comprehensive and fine-grained view of QCA performance

than is typical in simulation studies.

Third, the results reported in this article improve on prior work by taking

to heart two major critiques of QCA simulation studies. To begin, my simu-

lations consider that even if a QCA solution does not match the complete true

model, that solution could still be a correctness-preserving submodel of the

truth (Baumgartner and Thiem 2017b). In addition, my simulations take into

account the presence of model ambiguities, that is, the possibility that several
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boolean causal models could be consistent with the observed data (Baum-

gartner and Thiem 2017a; Rohlfing 2015). Since very few (if any) simulation

studies answer both of these challenges, the results presented here constitute

an important step forward in terms of offering a credible assessment of QCA

performance.

Taken together, the results of this study suggest that QCA analysts face a

double bind: When configurational diversity is limited, QCA algorithms

need large samples to recover complex boolean models of conditional causal

processes. As we increase the size of our samples, however, measurement

error risks being introduced, and this can negatively affect the performance

of our algorithms. This conclusion reinforces the crucial role that qualitative

analysis must play in QCA, as it can help guard against measurement error

and limit the inferential risk posed by incorrect algorithmic solutions.

A Double Bind

In its original incarnation, QCA was developed for the analysis of substantive

problems where a relatively small number of cases could be compared. Later,

QCA algorithms were used to analyze much larger data sets, with observa-

tions numbering in the thousands. Yet, most QCA methodologists still tout

its advantages in the analysis of data sets of small-to-intermediate size, and

this remains the predominant use case.

To illustrate, I collected data on the number of cases studied in 199 peer-

reviewed articles published between 2016 and 2019 using QCA techniques.

Twenty-five percent of those studies considered fewer than 25 cases, and 50

percent leveraged information on less than 63 cases. Figure 1 shows the full

distribution of sample sizes across the 199 studies.6 Based on these data, it

seems fair to say that the performance of QCA in relatively small samples

remains critical.

One important practical challenge is that if the number of observations is

limited, configurational diversity may also be limited. As all practitioners

know, some combinations of explanatory factors are usually more likely to

occur than others in real-life data sets. Missing data can also limit the types of

cases that one can consider for analysis. Often, some combinations of causal

factors are not observed at all. When configurational diversity is limited,

QCA algorithms may fail to recover the full causal model.

The most obvious way to improve configurational diversity is to collect

more data. However, increasing the sample size comes with an important

drawback. As more units are observed, it becomes more difficult to guarantee
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the integrity of our data sets, that is, it becomes more difficult to limit

measurement error.

Measurement error comes in different flavors. In its simplest form, it

could be the result of a simple data entry mistake, when a researcher (or

research assistant) fails to record the correct value for a given unit of obser-

vation. It can also arise at the data processing stage, as in the case of Reinhart

and Rogoff (2010), who mistakenly excluded five important countries from

their analysis of public debt and economic growth (Thomas, Michael, and

Robert 2014). Measurement error can also be introduced before analysts

even get a hold of their data. For example, in 2014, the gross domestic

product of Nigeria doubled overnight, following an overdue recalculation

by the country’s National Bureau of Statistics (Mezue 2014). Similarly, Linsi

and Mügge (2019) show that international economic statistics are system-

atically biased, and Kerner, Jerven, and Beatty (2017) suggest that national

statistical agencies could be engaging in “aid-seeking data management.” Of

course, measurement error could also be related to ambiguities of a more

conceptual nature. If a researcher’s theory is imprecise, observable units

could be misclassified or mischaracterized, which has important implications

for the analysis of sufficient and necessary conditions.

The goal of this article is to measure analysts’ ability to escape the double

bind posed by limited configurational diversity and measurement error. To

put this exercise in proper context, it is useful to note that the task that QCA

routines set for themselves is a very difficult one because their search target

is more complex than that of typical regression analyses. It is obviously more

difficult to recover a complex boolean ordering than a simple conditional

expectation. The fact that QCA researchers often try to recover complex
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Figure 1. Number of cases considered in 199 qualitative comparative analysis
applications (2016–2018).
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models from limited data compounds the difficulty. Under these circum-

stances, it should not be surprising to find that measurement error and sample

size have some effect on the performance of QCA algorithms. As always,

what matters is that practitioners know where a tool can be expected to

perform well and that they be able to assess the degree of scientific uncer-

tainty that remains postanalysis.7

In that constructive spirit, the next section introduces three fine-grained

evaluation criteria which can be used to evaluate the performance of QCA

algorithms. These formal criteria are then put to use in extensive Monte Carlo

simulations. The results offer some of the most credible estimates to date of

the performance of crisp set QCA in a range of realistic conditions.

Evaluation Criteria

To evaluate the fitness of QCA solutions, I adopt two complementary stra-

tegies. The first approach is most common in the field of qualitative com-

parative analysis, where complex combinations of causal factors are the main

object of interest. The second approach is more common in the fields of

statistics and machine learning, where classification (or predictive) accuracy

is often a central concern.

Data Generating Process

The goal of QCA algorithms is typically to find a complex boolean ordering

over a set of causal factors. Therefore, when evaluating the performance of a

QCA solution, it makes sense for simulation studies to test whether that

solution is logically compatible with the true data generating process. To

do this, I propose two new fitness criteria: wrongness and completeness.

The wrongness and completeness concepts build on work by Baumgartner

and Thiem (2017b), two leading QCA methodologists who formulated sharp

rebukes of prior simulation-based work in this field. In a recent Sociological

Methods & Research article, these authors claim that although QCA is “often

trusted,” it is “never (properly) tested.” The crux of their critique is simple,

yet powerful: In the face of causal complexity, QCA may not always retrieve

the full model of the truth, but it can nevertheless identify “submodels” that

are consistent with the truth.

For example, consider an event Z which occurs if at least one of three

conditions obtains: ð¬A ^ BÞ _ ðB ^ ¬CÞ _ D. Typically, simulation-based

tests check if QCA recovers the full causal model and count as a mistake any

result that does not exactly match the truth. However, as Baumgartner and

6 Sociological Methods & Research XX(X)



Thiem point out, a simpler solution like ðB ^ ¬CÞ _ D should not necessarily

be considered a “mistake,” since that submodel remains logically compatible

with the truth. More generally, the authors argue that evaluating the fitness of

QCA solutions requires us to consider whether those solutions are

“correctness-preserving” submodels of the truth.

Intuitively, a correctness-preserving submodel is a set of conditions which

are simpler than the reference model, while remaining logically consistent

with that benchmark. In other words, even if a submodel does not capture the

full truth, the factors that it identifies as relevant still lie on the causal path to

the outcome variable.8 Since most existing simulation-based tests do not take

submodels into account, they could overstate the practical problems of QCA.

To improve the credibility of simulation results, I introduce two fine-

grained and complementary measures of solution fitness:

1. Wrongness: A QCA solution is “wrong” if at least one of its submo-

dels is not a submodel of the truth. I measure the level of wrongness

by counting the proportion of solution submodels that are not sub-

models of the truth.

2. Completeness: A QCA solution is “complete” if all the submodels of

the truth are submodels of the QCA solution. I measure the level of

completeness by counting the proportion of submodels of the truth

that are also submodels of the solution.

Roughly speaking, we can think of a QCA solution as allowing analysts to

make a certain number of claims about causally relevant variables. Wrong-

ness measures the share of causal claims that are ostensibly supported by the

QCA solution but which are in fact erroneous. Completeness measures the

share of possible true claims that our QCA solution captures.9

Classification Accuracy

Researchers who work in the QCA tradition do not usually report measures

of classification accuracy, since classification is not always considered to be

an explicit goal of QCA analysis. Nevertheless, it can be useful to approach

the problem from this perspective, since it allows us to build a bridge

between QCA and conventional statistics; classification-based fitness criteria

can easily be understood and interpreted by researchers working in both

traditions.

One natural way to measure the performance of QCA solutions in terms of

classification power is to test whether a given QCA solution correctly
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classifies units with different combinations of explanatory variables. For

example, if the true model of the world is

Z , ð¬A ^ BÞ _ ðB ^ ¬CÞ _ D;

and if an individual has traits A ¼ 0;B ¼ 1, then we expect Z ¼ 1. If a

QCA algorithm produces the following (incomplete) solution candidate:

Z , ð¬A ^ BÞ _ D;

we would expect that same individual to exhibit Z ¼ 1 as well. Even if the

candidate solution is incomplete, it makes the correct “classification.” To

measure the performance of a QCA solution, we can simply calculate its

RMSE over the 16 possible combinations of A;B;C;D:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16

X16

i¼1

ðZi � Ẑ iÞ2
vuut ;

where Zi is the true value of Z for the ith configuration, and Ẑ i is the value

of Z that is consistent with the QCA solution candidate.

Simulation Design

To test the performance of QCA, I take three steps: (1) simulate hundreds of

thousands of data sets governed by a known causal model; (2) estimate QCA

models to extract solutions from each data set;10 and (3) measure the wrong-

ness, completeness, and RMSE of each solution. Figure 2 gives a more

detailed description of this Monte Carlo design.

For continuity and simplicity, I consider the same data generating process

as in Baumgartner and Thiem (2017b). Each data set includes five binary

variables which conform to this law: Z , ð¬A ^ BÞ _ ðB ^ ¬CÞ _ D.

Sample Size and Configurational Diversity

As mentioned above, it seems reasonable to expect that configurational

diversity will affect the quality of solutions proposed by a QCA algorithm.

Consider the same case as above, where five binary variables are related by

this law: Z , ð¬A ^ BÞ _ ðB ^ ¬CÞ _ D. It is easy to show that 16 different

combinations of A;B;C;D; Z satisfy this causal model. If only a small frac-

tion of those 16 configurations are actually observed empirically, QCA algo-

rithms can hardly be blamed for failing to retrieve the complete causal

model, since there would not be enough information to do so. Put simply,
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the completeness and wrongness of QCA solutions surely depend on the

diversity of our data sets.

Unfortunately, even if drawing a link between configurational diversity

and QCA solution quality is commonplace, that link is of limited use to

practitioners. Unless all the possible combinations of explanators are actually

observed, data analysts will never be certain that their data are diverse

enough because this would require a priori knowledge of the true causal

model.11 In this article, I use explicit distributional assumptions to tie the

concept of configurational diversity to the size of a data set. This is an

important contribution because it can help analysts develop intuition about

the sample size that they need to draw credible inference using QCA.

In an ideal world, each truthful configuration of explanators would occur

with equal frequency in our data sets. This guarantees a certain level of

configurational diversity, even with relatively few data points. As every

analyst knows, however, some configurations of variables are much more

likely to occur than others in real-life data sets.

1. Simulate
(a) Choose a true causal process: Z, (¬A ^ B) _ (B ^¬C) _ D, where

A, B, C, D, Z are binary variables.
(b) Identify the 16 configurations of A, B, C, D, Z that conform to the

truth.
(c) Identify the 16 configurations of A, B, C, D, Z that do not conform to

the truth.
(d) Take n observations from the set of truth-conforming configurations

by drawing with replacement using constant (or Log-Normal)
sampling weights.

(e) Take k observations from the set of truth-breaking configurations
by drawing with replacement using constant sampling weights.

(f) Combine the n truth-conforming and the k truth-breaking
observations into a single dataset.

2. Estimate
(a) Build a truth table and compute a parsimonious QCA solution using

the truthTable and eQMC functions from the QCApro library for R.
3. Measure

(a) Calculate the wrongness, completeness, and RMSE of each solution.

Repeat steps one, two, and three 5000 times.

Figure 2. Monte Carlo simulation design.
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To operationalize this intuition, I create simulated data sets with sample

sizes ranging from 20 to 300. In some simulations, I assign a constant sam-

pling weight to each true configuration of A;B;C;D; Z; this ensures that each

of them will be equally likely to be observed. In other simulations, I assign

sampling weights drawn from a log-normal distribution (m ¼ 0;s ¼ 1) to

each true configuration of A;B;C;D; Z; this ensures that some of them will

be more likely to be observed than others.12

Figure 3 illustrates the distinction. In the unrealistic best-case scenario,

where each truthful configuration has the same chance of occurring (constant

sampling weights), we need a sample size of just under 100 observations to

reach full configurational diversity. When some configurations are more likely

than others (log-normal sampling weights), even a large sample size (e.g.,

n ¼ 300) does not ensure saturation. Importantly, these results refer to data sets

with only four binary explanators. Reaching full configurational diversity will

obviously require larger data sets when the number of explanators increases.

Measurement Error

To study the effect of measurement error, I introduce 0, 1, 2, or 3 randomly

selected “bad” observations in each data set. An observation is considered

“bad” if its combination of A;B;C;D;Z violates the true causal model.13

Introducing those bad observations allows us to assess the effect of
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Figure 3. On average, what share of the 16 truthful configurations of A; B; C;D;Z are
observed in simulated data sets?
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measurement error, classification problems, typological ambiguity, and data

entry mistakes on QCA solution quality.

Consistency and Overfitting

Ragin (2006:292) introduced the concept of “set theoretic consistency” to

QCA analysis, defining it as “the degree to which the cases sharing a given

condition or combination of conditions [ . . . ] agree in displaying the outcome

in question.” Many modern QCA software routines allow users to define a

consistency threshold, which relaxes the need for every case to conform

exactly to a single causal process. It is well-known that QCA can overfit data

when the consistency thresholds of algorithms are set too high (Schneider and

Wagemann 2012). Thus, when analysts expect some measurement error, it

makes sense for them to choose a lower threshold. As Rohlfing (2015) argues,

ignoring overfitting in simulation studies could produce misleading results.

To explore the importance of user-selected settings for QCA performance,

I report two sets of results: one with the consistency threshold set to 1.0 and

the other with the consistency set to 0.75. The 1.0 threshold is important

because it could be selected by applied researchers who mistakenly believe

that their data are error free. It is also the default threshold used by several

QCA software routines. Even if applied researchers have access to clear

guidelines and best practices, we know that software defaults remain

extremely important because they have strong behavioral effects. The 0.75

threshold is also important because it reduces the likelihood of overfitting

and because it has become a focal point of sorts in both applied work and

simulation-based studies (Baumgartner and Ambühl, 2019).

Model Ambiguities

Wrongness, completeness, and RMSE are solution-level criteria. However,

QCA algorithms often propose a “model space” composed of several candi-

date solutions rather than a single solution. For instance, in the thousands of

simulations conducted for this article, QCApro produced a unique solution in

77 percent of cases, two candidates in 13 percent of cases, and three in

2 percent of cases. At the other end of the spectrum, one data set yielded a

model space with 72 candidates.

The ability to offer several solution candidates is an important feature of

QCA routines. Indeed, it has long been recognized that several logical models

can be compatible with the same set of configurational data (Simon 1954;

Sprites, Glymour, and Scheines 2000). When empirical data underdetermine
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their own causal modeling, the proper thing to do is to display epistemological

humility and to propose the full range of data-consistent model candidates.

In a recent contribution, Baumgartner and Thiem (2017a) argue that

model ambiguities are widespread in real-life applications of QCA and that

failure to consider the full range of data-consistent models can lead research-

ers astray. Baumgartner and Thiem (2017b) also point out that when a QCA

routine produces several model candidates, those candidates should be inter-

preted disjunctively. A QCA routine succeeds if it includes the correct model

as one of the candidates in its model space. Clearly, model ambiguity needs

to be considered in any simulation exercise (Rohlfing 2015).

To move from the solution level of analysis to the model space level of

analysis, we thus ask the following question: How good is the best solution in

each model space? More specifically, to measure the wrongness of a QCA

model space, we take the minimum level of wrongness of all the solution

candidates. To measure completeness, we take the maximum level of com-

pleteness.14 To measure the RMSE, we take the minimum RMSE.

Focusing on the best available solution is generous to the QCA algorithm,

it is logically correct, and it is consistent with prior methodological work.

One potential downside of that approach is that it could yield simulation

results which are less directly relevant to applied researchers. Indeed, practi-

tioners will never know which of the proposed candidates is the best one in

any given application. Focusing on maximum completeness and minimum

wrongness could also favor less informative methods which generate a lot of

candidate solutions. For instance, a model space with 50 candidates could

have perfect scores on all criteria, even if it includes 49 wildly incorrect

solutions. Despite these trade-offs, the proposed treatment of model ambi-

guities seems like the most principled approach.

For the rest of the analysis, we will only consider the best available QCA

solution in any given model space. In the discussion of results, a claim such

as “X percent of the causal claims are correct” will be shorthand for “X

percent of the causal claims compatible with the best QCA solution in the

model space are correct.”

Results

Figure 4 reports the average level of wrongness of QCA solutions.15 The

most striking finding is that when using the default consistency threshold of

1.00, a single truth-breaking observation suffices to lead QCA routines astray

in a large proportion of data sets.16 In a sample of 300 observations with a

single bad case, about 38 percent of the causal claims which are ostensibly

12 Sociological Methods & Research XX(X)



supported by QCA turn out to be false. Introducing three bad observations (of

300) makes the proportion of false causal claims jump above 70 percent.

Importantly, the wrongness does not improve as we increase the number of

“good” observations in the data set.

Setting the consistency threshold to 0.75 improves matters considerably

but only in large data sets. Moreover, the level of wrongness remains high in

most realistic settings. For instance, when the sample includes 20 good units

and 1 erroneous observation, QCA produces about 30 percent of incorrect

causal claims. When there are three erroneous observations, about 60 percent

of causal claims are incompatible with the truth. When the sample size

includes 50 units with one error, about 20 percent of solution submodels are

wrong. In short, to ensure that a QCA algorithm will produce an acceptable

number of false claims, researchers need to analyze a large data set of

exceptional quality using the correct tuning parameters.

Figure 5 reports the average level of completeness of QCA solutions. The

first conclusion to draw is that the sample size required to recover a complete

boolean model is much larger than is typically acknowledged in the literature.
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Unless a sample includes over 70 observations, QCA routines are unlikely to

recover the full causal process, even in a simple four-variables case. Moreover,

when some configurations are more likely to be observed than others, the rate

of convergence toward 100 percent completeness slows down considerably.

When some configurations are observed more frequently than others, research-

ers will typically need over 300 observations to recover a complete model.17

The second result to notice is that, in the presence of measurement error,

the consistency threshold has an important effect on performance: The top

right panel shows a substantial decrease in completeness when errors are

introduced, but not the bottom right panel. This reinforces the idea that users

should be extremely careful when choosing the tuning parameters of their

preferred QCA software. Given that measurement error is ubiquitous in

social science and considering the powerful effect that software defaults can

have on user behavior, these results also suggest that QCA software devel-

opers must seriously consider the default parameters of their routines.

These results also show that, in most real-life applications, limited

configurational diversity forces researchers to use large data sets if they

hope to recover complete QCA solutions. Unfortunately, as we increase

the size of data sets, it becomes harder to guarantee data integrity, and
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QCA routines can produce false causal claims in the presence of mea-

surement error.

So far, we have assessed whether QCA solutions are compatible with the

data generating process used to simulate data. A complementary approach is

to measure the classification accuracy of QCA solutions. Figure 6 reports

the average RMSE of the solutions computed for the same simulated data we

used thus far. The results suggest that measurement error, sample size,

configurational diversity, and tuning parameters can have important effects

on performance.

Specifically, Figure 6 shows that introducing a single error can sometimes

increase the RMSE of a QCA model space by 100 percent or more. With the

exception of cases where the sample is very large and configurational diver-

sity is high, introducing a single error increases RMSE by at least 50 percent.

Introducing three errors can increase the RMSE by a factor of three or four.

Figure 6 also offers good news for QCA advocates: RMSE trends down-

ward as the sample size increases, and this downward trend is accelerated

when users select appropriate tuning parameters. To minimize classification

error, the main challenge is, again, to increase the sample size while preser-

ving data integrity.
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Figure 6. Root mean squared error of parsimonious qualitative comparative analysis
solutions calculated in Monte Carlo simulations.
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Conclusion

This article introduced two new formal criteria, and adapted a third one, in order

to evaluate the performance of QCA in simulated data: wrongness, complete-

ness, and RMSE. These criteria have intuitive interpretations and allow us to

take into account two major critiques of prior simulation-based efforts to eval-

uate QCA. Specifically, the simulations described above take into account the

possibility of model ambiguities, and the importance of correctness-preserving

submodels (Baumgartner and Thiem 2017b; Rohlfing 2015).

Based on extensive Monte Carlo simulations, I conclude that crisp set QCA

algorithms can be very sensitive to measurement error. In principle, analysts

could circumvent this problem by building small data sets that are completely

error free. Unfortunately, the results presented here also suggest that QCA

requires rather large data sets in order to work effectively.

Given the vast potential for human error at all stages of the scientific

process—from the development of a typology, to measurement, classifica-

tion, and data entry—it seems likely that most large (or even medium) sized

data sets will contain some measurement error. Unless data analysts can

guarantee that their data sets are completely error free, and unless they can

pick optimal tuning parameters for QCA algorithms, prudence in interpreta-

tion is warranted.

Debates on the value of QCA often revolve around the distinction between

deterministic and probabilistic types of arguments. But one does not need to

make strong ontological commitments to conclude that the extreme sensitiv-

ity of QCA algorithms to measurement error is a major problem; all one

needs to do is acknowledge that the social scientists who build data sets are

human and fallible. The field of statistics was transformed in the 1980s by the

development of robust high breakdown point estimators, which could yield

reliable inference in the presence of outliers (Huber, 1981). If QCA propo-

nents want the approach to flourish, they will likewise need to innovate and

offer algorithms that are more robust to mild departures from the ideal world.
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The author thanks Damien Bol, Gabrielle Péloquin-Skulski, Bear Braumoeller, Chris-

topher Winship, and two excellent reviewers.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

16 Sociological Methods & Research XX(X)



Funding

The author(s) received no financial support for the research, authorship, and/or pub-

lication of this article.

ORCID iD

Vincent Arel-Bundock https://orcid.org/0000-0003-2042-7063

Notes

1. On limited diversity and qualitative comparative analysis (QCA), see Seawright

(2014) and Baumgartner and Thiem (2017b).

2. This article builds on previous work by Hug (2013) and Baumgartner and Ambühl

(2019). Hug introduces random variation in several existing data sets to assess the

effect of noise on QCA solutions. The author does not take into account model

ambiguities or correctness-preserving submodels, and the fitness criteria that he

uses to evaluate QCA solutions are too coarse to allow the rich and intuitive

interpretation offered below. Baumgartner and Ambühl (2019) focus on a com-

parison of QCA to multivalue coincidence analysis. Their simulations allow some

measurement error, but the data generating process ensures that the user-supplied

consistency threshold is always satisfied. Since applied researchers will never

know exactly what specific threshold to use in any given application, that condition

is likely to be violated in empirical work. In addition, the authors use a very

different (binary) fitness criteria: the QCA output passes a test if it includes a

single correctness-preserving model that is a submodel of the truth. As such, their

results are best viewed as complementary rather than as comparable to mine.

3. Here, the expression “causal claims” refers to the list of submodels which are

logically compatible with the best QCA solution proposed by the algorithm for a

given data set.

4. The 30 percent and 60 percent figures represent the average wrongness in simu-

lations with limited configurational diversity and different consistency thresh-

olds. Formal definitions of these terms are given below.

5. At most 1 mistake of the 300, or perfect equiprobability of configurations. These

figures understate the severity of the problem in cases where a QCA algorithm

proposes several model candidates instead of a single QCA solution. As I explain

below, the simulation results described herein only consider the best solution

proposed by the QCA routine for any particular data set. Unfortunately, applied

researchers will never know which model is best in any given application.

6. This histogram does not distinguish between applications of crisp set, fuzzy set,

or multivalue QCA. Six cases with sample sizes over 1,000 are omitted from the
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graph to improve readability. All the articles considered were archived in the

COMPASSS bibliography: http://compasss.org

7. For further discussion, see the debate between Thiem (2014) and Hug (2014). On

uncertainty in QCA analysis, see Braumoeller (2015).

8. Readers will find a rigorous discussion of the conditions under which submodels

preserve configurational correctness in Baumgartner and Thiem (2017b:5-9). The

QCApro library for R includes a software routine to extract all correctness-

preserving submodels from reference models and QCA solutions (Thiem 2018).

9. A QCA solution can be both complete and wrong simultaneously if the solution is

a superset of the true model. Because some submodels are related to one another

(e.g., when they are constituent components of the same complex condition),

these measures could punish more severely QCA solutions which are both incor-

rect and complex (i.e., incorrect solutions with many submodels). Nevertheless,

completeness and wrongness remain useful measures of solution fitness, built to

answer a straightforward question: Among all the causal claims which are autho-

rized by a given model, what is the proportion of claims which are actually

compatible with the truth? Note that root mean squared error measure that I

propose below is unaffected by the interdependence of solution submodels.

10. I use the Enhanced Quine–McCluskey Algorithm (eQMC) implemented in the

eQMC function of the QCApro library for R.

11. This is analogous to the fundamental problem of causal inference that is often

highlighted in the statistics literature (see Imbens and Rubin 2015). Also see

Baumgartner and Thiem (2017b:9) on the configurational homogeneity condition.

12. The choice of a log-normal distribution is arbitrary. The goal is simply to offer a

contrast to the constant weights assumption, which is highly unrealistic and yet is

still widely adopted in simulation-based tests of QCA. Readers can easily con-

duct tests using alternative distributional assumptions by modifying a single line

of the R code which accompanies this article.

13. On average, flipping the value of two random data points (e.g., the value of Z for

one unit of observation, and the value of A for another) will produce about one

truth-breaking configuration. Flipping the value of five random data points will,

on average, produce about two truth-breaking configurations.

14. In theory, the maximum completeness and the minimum wrongness could come

from different model candidates, but this is rarely the case in practice.

15. Again, we only consider the best available solution in any given model space.

16. At the time of writing, most of the popular implementations of crisp set QCA use

1.00 as the default consistency threshold.

17. Interestingly, with limited diversity and small sample sizes, the level of comple-

teness can be improved by measurement error. This counterintuitive phenom-

enon deserves further study. One possible explanation is that the observations
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introduced by mistake artificially increase the diversity of the data and produce

“small” submodels that are consistent with the truth.
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